Single-copy chromosomal integration systems for Francisella tularensis.

نویسندگان

  • Eric D LoVullo
  • Claudia R Molins-Schneekloth
  • Herbert P Schweizer
  • Martin S Pavelka
چکیده

Francisella tularensis is a fastidious Gram-negative bacterium responsible for the zoonotic disease tularemia. Investigation of the biology and molecular pathogenesis of F. tularensis has been limited by the difficulties in manipulating such a highly pathogenic organism and by a lack of genetic tools. However, recent advances have substantially improved the ability of researchers to genetically manipulate this organism. To expand the molecular toolbox we have developed two systems to stably integrate genetic elements in single-copy into the F. tularensis genome. The first system is based upon the ability of transposon Tn7 to insert in both a site- and orientation-specific manner at high frequency into the attTn7 site located downstream of the highly conserved glmS gene. The second system consists of a sacB-based suicide plasmid used for allelic exchange of unmarked elements with the blaB gene, encoding a beta-lactamase, resulting in the replacement of blaB with the element and the loss of ampicillin resistance. To test these new tools we used them to complement a novel d-glutamate auxotroph of F. tularensis LVS, created using an improved sacB-based allelic exchange plasmid. These new systems will be helpful for the genetic manipulation of F. tularensis in studies of tularemia biology, especially where the use of multi-copy plasmids or antibiotic markers may not be suitable.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large Direct Repeats Flank Genomic Rearrangements between a New Clinical Isolate of Francisella tularensis subsp. tularensis A1 and Schu S4

Francisella tularensis subspecies tularensis consists of two separate populations A1 and A2. This report describes the complete genome sequence of NE061598, an F. tularensis subspecies tularensis A1 isolated in 1998 from a human with clinical disease in Nebraska, United States of America. The genome sequence was compared to Schu S4, an F. tularensis subspecies tularensis A1a strain originally i...

متن کامل

Molecular method for discrimination between Francisella tularensis and Francisella-like endosymbionts.

Environmental studies on the distribution of Francisella spp. are hampered by the frequency of Francisella-like endosymbionts that can produce a misleading positive result. A new, efficient molecular method for detection of Francisella tularensis and its discrimination from Francisella-like endosymbionts, as well as two variants associated with human disease (unusual F. tularensis strain FnSp1 ...

متن کامل

Complete Genomic Characterization of a Pathogenic A.II Strain of Francisella tularensis Subspecies tularensis

Francisella tularensis is the causative agent of tularemia, which is a highly lethal disease from nature and potentially from a biological weapon. This species contains four recognized subspecies including the North American endemic F. tularensis subsp. tularensis (type A), whose genetic diversity is correlated with its geographic distribution including a major population subdivision referred t...

متن کامل

IglE is an outer membrane-associated lipoprotein essential for intracellular survival and murine virulence of type A Francisella tularensis.

IglE is a small, hypothetical protein encoded by the duplicated Francisella pathogenicity island (FPI). Inactivation of both copies of iglE rendered Francisella tularensis subsp. tularensis Schu S4 avirulent and incapable of intracellular replication, owing to an inability to escape the phagosome. This defect was fully reversed following single-copy expression of iglE in trans from attTn7 under...

متن کامل

Canonical Insertion-Deletion Markers for Rapid DNA Typing of Francisella tularensis

To develop effective and accurate typing of strains of Francisella tularensis, a potent human pathogen and a putative bioterrorist agent, we combined analysis of insertion-deletion (indel) markers with multiple-locus variable-number tandem repeat analysis (MLVA). From 5 representative F. tularensis genome sequences, 38 indel markers with canonical properties, i.e., capable of sorting strains in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Microbiology

دوره 155 Pt 4  شماره 

صفحات  -

تاریخ انتشار 2009